Regulation of cardiac CACNB2 by microRNA-499: Potential role in atrial fibrillation
نویسندگان
چکیده
The L-type calcium channel (LTCC) is one of the major ion channels that are known to be associated with the electrical remodeling of atrial fibrillation (AF). In AF, there is significant downregulation of the LTCC, but the underlying mechanism for such downregulation is not clear. We have previously reported that microRNA-499 (miR-499) is significantly upregulated in patients with permanent AF and that KCNN3, the gene that encodes the small-conductance calcium-activated potassium channel 3 (SK3), is a target of miR-499. We found that CACNB2, an important subunit of the LTCC, is also a target of miR-499. We hypothesize that miR-499 plays an important role in AF electrical remodeling by regulating the expression of CACNB2 and the LTCC. In atrial tissue from patients with permanent AF, CACNB2 was significantly downregulated by 67% (n = 4, p < 0.05) compared to those from patients with no history of AF. Transfection of miR-499 mimic into HL-1 cells, a mouse hyperplastic atrial cardiac myocyte cell-line, resulted in the downregulation of CACNB2 protein expression, while that of miR-499 inhibitor upregulated CACNB2 protein expression. Binding of miR-499 to the 3' untranslated region of CACNB2 was confirmed by luciferase reporter assay and by the increased presence of CACNB2 mRNA in Argonaute pulled-down microRNA-induced silencing complexes after transfection with the miR-499 mimic. In addition, downregulation of CACNB2 resulted in the downregulation of protein levels of the pore-forming α-subunit (CACNA1C). In conclusion, upregulation of atrial miR-499 induces the downregulation of CACNB2 expression and may contribute to the electrical remodeling in AF.
منابع مشابه
Modulation of extracellular atrioventricular node field potential pattern and ventricular rhythm by morphine in experimental atrial fibrillation in isolated rabbit heart
Introduction: Endorphins are produced by cardiomyocytes, and exert different effects on the heart. The aim of the present study is to assess morphine effects on extracellular atrioventricular (AV) node field potential pattern and ventricular rhythm of isolated rabbit heart during experimental atrial fibrillation (AF). Methods: Effects of different concentrations of morphine (10, 20, 50 and 1...
متن کاملChronic atrial fibrillation increases microRNA-21 in human atrial myocytes decreasing L-type calcium current.
BACKGROUND Atrial fibrillation is characterized by progressive atrial structural and electrical changes (atrial remodeling) that favor arrhythmia recurrence and maintenance. Reduction of L-type Ca(2+) current (I(Ca,L)) density is a hallmark of the electrical remodeling. Alterations in atrial microRNAs could contribute to the protein changes underlying atrial fibrillation-induced atrial electric...
متن کاملInvestigating the Effect of Inflammation on Atrial Fibrillation Occurrence by Measuring Highly Sensitive C-reactive Protein (hs-CRP)
Introduction: Atrial fibrillation (AF) is the most prevalent cardiac arrhythmias that cardiologists and internists encounter. The goal of this article is to clarify an overview of the evidence linking inflammation to AF existence, which may highlight the effect of some pharmacological agents that have genuine potential to reduce the clinical burden of AF by modulating inflammatory pathways. Mat...
متن کاملExpression profile analysis of circulating microRNAs and their effects on ion channels in Chinese atrial fibrillation patients.
OBJECTIVE To investigate the changes in expression profile of circulating microRNAs (miRNAs) and the regulatory effect of atrial fibrilation (AF)-related miRNAs on ion channels. METHODS 112 patients with AF were assigned into observation group, and another 112 non-AF people were assigned into control group. Total plasma RNAs were extracted from patients' blood samples. Differentially expresse...
متن کاملMicroRNA regulation and cardiac calcium signaling: role in cardiac disease and therapeutic potential.
MicroRNAs (miRNAs) are emerging as key control molecules in the regulation of gene expression, and their role in heart disease is becoming increasingly evident. Given the critical role of Ca(2+) handling and signaling proteins in the maintenance of cardiac function, the targeting of such proteins by miRNAs would be expected to have important consequences. miRNAs have indeed been shown to contro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2017